智算模组 SM7 32-EP4-22

智算模组 SM7 32-EP4-22搭载算丰第四代智能视觉深度学习处理器BM1684X,可集成于边缘计算盒、智能NVR、机器人、无人机中,高效适配各类场景化深度学习算法,实现人脸识别、视频结构化、行为分析、状态监测等应用,为智慧城市、智慧电力、智慧交通、智慧煤矿等行业进行深度学习赋能。

超高算力, 超强解码

• 支持FP32/FP16/INT8,可同时进行32路高清视 频解码与智能分析

宽温低耗,灵活部署

- -40℃~+70℃宽温, 灵活应对不同环境
- 2/3 信用卡大小,典型功耗小于18W

双模驱动,强扩展性

- PCIE Mode可作从设备, SOC Mode作主设备
- 接口丰富,功能外扩便捷

应用场景

服务器

边缘计算盒

机器人

无人机

智能NVR

边缘网关

终端

视觉货柜

产品规格

产品型号		SM7 32-EP4-22
处理器		8核 ARM A53@2.3GHz
数据处理能力	支持FP32/FP16/INT8	,可同时进行32路高清视频解码与智能分析
视频/图片 编解码	视频解码能力	H.264 & H.265: 32路 1080P @25fps; 最大分辨率支持7680 x 4320
	视频编码能力	H.264 & H.265: 12路 1080P @25fps; 最大分辨率支持7680 x 4320
	图片解码能力 (JPEG)	600张/秒 @1080P; 最大分辨率支持 32768 x 32768
内存	标准配置	16GB
eMMC	标准配置	64GB
接口	PCIE	PCIE 3.0 x 4 EP + x 4 RC
	网络接口	10/100/1000Mbps RGMII x 2
	总线接口	GPIO / SDIO / PWM / I2C等
连接器	接口规格	144-PIN BTB Connector
工作温度	温度范围	-40°C ~ +70°C
功耗	典型值	18W
结构尺寸	长*宽*高	62 x 58 x 33.45 (mm)